DOI: 10.1002/ejic.200500420

Cyclometalated Ruthenium Compounds Containing 2-(2'-Pyridyl)-4-methylphenyl and Benzo[h]quinolyl Ligands

Qian-Feng Zhang, [a] Ka-Man Cheung, [a] Ian D. Williams, [a] and Wa-Hung Leung*[a]

Keywords: Ruthenium / Cyclometalated ligands / Organometallic compounds / Transition metals

Transmetalation of $Hg(ptpy)_2$ [Hptpy = 2-(4-tolylpyridine) with $Cp^*Ru(NO)Cl_2$ ($Cp^* = \eta^5-C_5Me_5$)] gave $[Cp^*Ru(NO)$ $(ptpy)]_2[Hg_2Cl_6]$ ([1]₂·Hg₂Cl₆) whereas that with $[Cp*RuCl_2]_x$ gave the dinuclear Ru^{II} - Ru^{IV} compound $[Cp^*Ru(\mu-\eta^6:\eta^2-\eta^2-\eta^2)]$ ptpy)RuCl₂Cp*|[Hg₂Cl₆] (2). Treatment of Ru(3-phenylindenylid-1-ene)Cl₂(PPh₃)₂ with Hg(ptpy)₂ resulted in coupling of ptpy with the 3-phenylidenylid-1-ene ligand, and the formation of Ru(Ph-ind-ptpy)(PPh₃)Cl {Ph-ind-tpy = 3-phenyl-1-[2-(4-toyl)pyridyl]indenyl} (3), in which the chelated [Ph-indtpy] ligand binds to Ru through the η^5 -indenyl ring and the

pendant pyridyl group. Treatment of $[Ru(CO)_2Cl_2]_n$ with $[Hg(ptpy)Cl]_2$ afforded $[Ru(ptpy)(CO)_2]_2(\mu-Cl)_2$ (8). Irradiation of cis- $[Ru(bzq)_2(CO)_2]$ (Hbzq = benzo[h]quinoline) with UV light in MeCN afforded cis-[Ru(bzq)₂(CO)(MeCN)] (9). Photolysis of cis-[Ru(bzq)2(CO)2] in THF in the presence of PPh_3 and pyridine (py) afforded cis-[Ru(bzq)₂(CO)(L)] [L = PPh_3 (10), py (11)]. The crystal structures of complexes 1–3, 8, and 10 have been determined.

(© Wiley-VCH Verlag GmbH & Co. KGaA, 69451 Weinheim, Germany, 2005)

Introduction

Transition-metal complexes containing cyclometalated N^C ligands, notably 2-phenylpyridine (ppy), have attracted much attention because of their interesting photoluminescent properties^[1] and their potential applications in organic synthesis^[2] and bioinorganic chemistry.^[3,4] Of note are cyclometalated Ir^{III} complexes, which have been used as phosphorescent dopants for organic light-emitting diodes,[5] chemical sensors, [6] and luminescent labels for biomolecules.^[7] While the coordination chemistry of cyclometalated Ir^{III} compounds of the types [Ir(ppy)₃] and [Ir(ppy)₂- $(L)(X)]^{[1,8-10]}$ is well developed, the isoelectronic Ru^{II} analogues have received less attention.[9,10] This is in sharp contrast with cationic Ru^{II} complexes with 2,2'-bipyridyl (bpy) and polypyridyl ligands that exhibit rich redox- and photochemistry.[11] Owing to the anionic nature of ppy-, it is anticipated that high-valence Ru-ppy complexes are more easily accessible than the bpy analogues. Recently, electron-rich Ru^{II} cyclometalated complexes have been used as mediators for electron transfer with horseradish peroxidase and glucose oxidase.^[3]

To date, the most extensively explored Ru-ppy complexes are those supported by polypyridyl ligands.^[12] Cyclometalated Ru^{II} N^C complexes containing \(\eta^6 \)-arene^[13] and phosphane^[14,15] co-ligands have also been synthesized. These complexes were generally prepared by either transmetalation with organomercurials or direct cycloruthenation of THF gave $[Cp*Ru(ptpy)(NO)]_2[Hg_2Cl_6]$ ([1]₂·[Hg₂Cl₆]). Anion metathesis of [1]₂·[Hg₂Cl₆] with NaPF₆ in acetone Hg-free $[Cp*Ru(ptpy)(NO)][PF_6]$ (1[PF₆]) (Scheme 1). The formation of the chloromercurate anion [Hg₂Cl₆]²⁻ from HgCl₂ and chloride salts is well documented.[13c,17,18] It may be noted that Djukic et al. previously reported that treatment of $[(\eta^6-p\text{-cymene})RuCl_2]_2$ with Hg(ppy)Cl afforded $[(\eta^6-p\text{-cymene})Ru(ppy)Cl]\cdot HgCl_2\cdot^{[13c]}$ The IR spectrum of [1]2·[Hg2Cl6] shows the N-O band at

[a] Department of Chemistry, The Hong Kong University of Science and Technology,

Clear Water Bay, Kowloon, Hong Kong, P.R. China Fax: +852-2358-1594 E-mail: chleung@ust.hk

N^CH ligands. In contrast to $[M(ppy)_2]^+$ (M = Rh, Ir), Ru^{II} bis-cyclometalated complexes are rather rare, the only structurally characterized example being cis-[Ru(bzq)2- $(CO)_2$ (Hbzq = benzo[h]quinoline).^[16] As part of our continuing effort to explore the organometallic chemistry of high-valence Ru complexes, we set out to investigate the transmetalation between $Hg(ptpy)_2$ [Hptpy = 2-(4-tolyl)pyridine] and a variety of organoruthenium chloride compounds. Herein, we report on the syntheses and crystal structures of some cyclometalated ruthenium compounds containing the ptpy ligand. Furthermore, in order to prepare new Ru bis-cyclometalated complexes, photosubstitution of cis-[Ru(bzq)₂(CO)₂] with two-electron ligands has been studied.

Results and Discussion

Cyclometalated Ru Cp* Complexes

Treatment of Cp*Ru(NO)Cl₂ with Hg(ptpy)₂ in refluxing about 1780 cm⁻¹, which is higher than that for [Cp*Ru(NO)-Ph₂] (1755 cm⁻¹).^[19] The structure of [1]₂·[Hg₂Cl₆] has been established by an X-ray diffraction study. The [Hg₂Cl₆]²⁻

anion lies on a twofold rotation axis between two $[Cp*Ru(ptpy)(NO)]^+$ cations. The molecular structure of the cation $[1]^+$ is shown in Figure 1. The Ru–C(ptpy) [2.080(4) Å] and Ru–N [2.097(4) Å] distances and C(21)–Ru(1)–N(10) angle $[77.95(17)^\circ]$ in 1^+ are similar to those in $[(\eta^6\text{-}p\text{-}cymene)Ru(ppy)Cl]\cdot HgCl_2.^{[13c]}$ The Ru–NO distance of 1.751(4) Å is shorter than that in $[Ru(ppy)(tpy)(N-O)][PF_6]$ (tpy = 2,2':6',6''-terpyridine) $[1.826(4) \text{ Å}],^{[12d]}$ indicating the strong Ru–to-NO π -backbonding in 1^+ . The N–O distance of 1.146(5) Å and the Ru–N–O angle of $174.4(4)^\circ$ are normal by comparison with other linear nitrosyl compounds.[20]

$$\begin{array}{c|c} & & & \\ &$$

 $[1]_2[Hg_2Cl_6]$

Scheme 1. Synthesis of [1]₂·[Hg₂Cl₆].

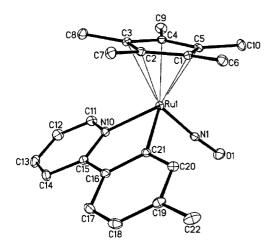


Figure 1. Perspective view of the cation $[Cp*Ru(ptpy)(NO)]^+$ (displacement ellipsoids drawn at the 50% probability level). Selected bond lengths $[\mathring{A}]$ and angles [°]: Ru-Cp*(centroid) 1.898(3), Ru(1)–N(1) 1.751(4), Ru(1)–N(10) 2.097(4), Ru(1)–C(21) 2.080(4), N(1)–O(1) 1.146(5); N(10)–Ru(1)–C(21) 78.0(2), N(1)–Ru(1)–N(10) 99.9(2), N(1)–Ru(1)–C(21) 94.5(2), Ru(1)–N(1)–O(1) 174.4(4).

Treatment of [Cp*RuCl₂]_x with [Hg(ptpy)₂] afforded a dark green material from which air-stable dark crystals characterized as [Cp*Ru(μ-ptpy)RuCp*Cl₂]₂[Hg₂Cl₆] (2) were isolated (Scheme 2). The ¹H NMR spectrum shows two Cp* signals at δ = 1.87 and 1.99 ppm, consistent with the solid-state structure. Upon binding to the Cp*Ru^{II} fragment the resonant signals for the tolyl ring of the ptpy ligand are shifted to the upfield region (δ = 4.86–5.36 ppm; cf. δ = 7.40–7.72 ppm for 1⁺). The identity of 2 has been established by a single-crystal X-ray diffraction study (Figure 2). The molecular structure of the cation [Cp*Ru(μ-ptpy)RuCp*Cl₂]⁺ in 2 consists of a [Cp*Cl₂Ru^{IV}(ptpy)]⁺ moiety, the 4-tolyl ring of which binds to the Cp*Ru^{II} fragment in an η⁶ fashion. It may be noted that a related bimetallic complex, [(CO)₃Cr(μ-ppy)Ru(η⁶-*p*-cymene)Cl], which

contains a μ - η^2 : η^6 -ppy ligand, has been synthesized recently.[13c] The geometry around Ru^{IV} in 2 is four-legged piano-stool whereas the RuII-containing moiety has a sandwich structure. The 4-tolyl and pyridine rings of the ptpy ligand are not coplanar, with a dihedral angle of about 12.3°. Cyclometalated Ru^{IV} complexes are rare. To the best of our knowledge, the only structurally characterized Ru^{IV} ppy complex is the mixed-valence Ru^{III} – Ru^{IV} compound [$\{Ru(ppy)(phen)Cl\}_2(\mu$ -O)][PF₆] (phen = 1,10-phenanthroline).[12e] The Ru^{IV}-Cp*(centroid) distance in 2 of 1.912(3) Å is comparable to reported Cp*Ru^{IV} compounds 1.916(4) Å for $[Cp*Ru(\eta^2-Se_2PiPr_2)(\eta^2-SeP$ iPr₂)][PF₆]),^[21] but is obviously longer than the Ru^{II}-Cp*(centroid) distance [1.717(2) Å]. The Ru^{IV}-N and Ru^{IV}–C(ptpy) distances [2.132(7) and 2.081(8) Å, respectively] in 2 are similar to those in 1⁺. The average Ru^{IV}-Cl distance of 2.417(2) Å is slightly longer than that of $[Cp*Ru^{IV}Cl_2]_2[\mu-O] [2.356(8) Å].^{[22]}$

Scheme 2. Synthesis of 2.

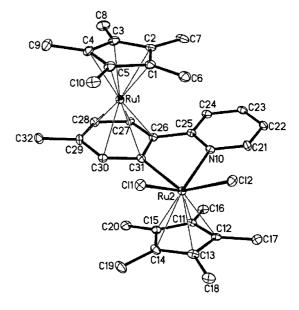


Figure 2. Perspective view of the cation [Cp*Ru(μ -ptpy)RuCp*RuCl₂]+ (displacement ellipsoids drawn at the 50% probability level). Selected bond lengths [Å] and angles [°]: Ru(1)–Cp*(centroid) 1.717(2), Ru(1)–tolyl(centroid) 1.810(2), Ru(2)–N(10) 2.132(7), Ru(2)–C(31) 2.291(8), Ru(2)–Cl(1) 2.429(2), Ru(2)–Cl(2) 2.405(2), Ru(2)–Cp*(centroid) 1.912(3); N(10)–Ru(2)–C(31) 75.7(3), N(10)–Ru(2)–Cl(1) 129.1(2), N(10)–Ru(2)–Cl(2) 84.5(2), C(31)–Ru(2)–Cl(1) 82.1(2), C(31)–Ru(2)–Cl(2) 134.4(2), Cl(1)–Ru(2)–Cl(2) 79.40(7).

Transmetalation of [Hg(ptpy)₂] with Ru Carbene

Attempts to synthesize cyclometalated Ru complexes containing metal-carbon multiple bonds starting from Ru carbene and vinylidene species such as Ru(=CHPh)(PCy₃)₂-Cl₂ and Ru(=C=CHPh)(PCy₃)₂Cl₂ were unsuccessful. In most cases, dark intractable materials were obtained. However, treatment of Ru(3-phenylindenylid-1-ene)(PPh₃)₂Cl₂ with Hg(ptpy)₂ afforded an air-stable crystalline product that has been characterized as Ru(Ph-ptpy-ind)(PPh₃)Cl (3) (Ph-ptpy-ind = η^5 : κN -3-phenyl-1-[2-(2-pyridyl)-4-tolyl]indenyl). It seems likely that 3 was formed by insertion of the indenylid-1-ene group into the Ru–C(ptpy) σ -bond. The insertion of carbene group into the M-C(N^C) bonds in $M(N^{C})(CO)_{4}$ (M = Mn, Re) has been studied in detail by Djukic, Dötz, and Pfeffer and their co-workers.[23,24] It was found that treatment of Mn(CO)₄(ppy) with PhLi followed by addition of MeOTf led to insertion of the carbene ligand C(Ph)(OMe) into the Mn–C(ppy) bond and the formation of a η^3 -benzyltricarbonyl Mn^I complex 4 (Scheme 3). [23a] On the other hand, thermolysis of Mn(CO)₄(Me-ppy) in the presence of 7-diazofluorene resulted in the insertion of the exo-alkylidene group into the Mn–C(ppy) bond. Subsequent cleavage of the Mn-N bond coupled with a series of haptotropic ring slippages afforded the Mn^I η⁵-fluorenyl complex 5 (Scheme 4). [23e] On the basis of these results, we propose that the transmetalation of Ru(3-phenylindenylid-1-ene)(PPh₃)₂Cl₂ with Hg(ppy)₂ initially afforded a Ru^{II} indenylid-1-ene intermediate 6 (Scheme 5). Insertion of the indenylid-1-ene ligand into the Ru-C bond in 6 followed by haptotropic ring shifts, possibly via an η^3 -allyl intermediate 7, afforded 3. Unlike the Mn(CO)₄(N^C) system, in which arenes tethered with cymantranes were formed,[23e] insertion of indenylidene into the Ru-C(ppy) bond led to formation of a chelated \(\eta^5\)-indenyl-ppy ligand, presumably because the PPh₃ ligand in 3 can be dissociated more easily than the carbonyl in the Mn counterparts.

Scheme 3. Insertion of carbene into the Mn–C(ppy) bond.^[23a]

The ${}^{31}P\{{}^{1}H\}$ NMR spectrum of **3** shows a singlet at $\delta = 33.1$ ppm due to the PPh₃ ligand. The solid-state structure of **3** is shown in Figure 3. Similar to other Ru^{II} indenyl complexes, the Ru–C distances involving the bridging carbon atoms C(25) and C(29) [2.354(3) and 2.307(3) Å] are longer than those for C(26), C(27), and C(28) [2.105(3)–2.196(3) Å]. The Ru–P distance [2.2690(8) Å] is similar to

Scheme 4. Reaction of Mn(CO)₄(Me-ppy) with 7-diazofluorene.^[23e]

Scheme 5. Proposed mechanism for the formation of 3.

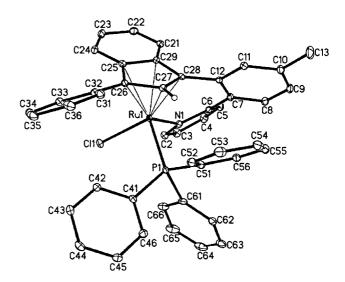


Figure 3. Perspective view of [Ru(Ph-ind-ptpy)(PPh₃)Cl] (3) (displacement ellipsoids drawn at the 50% probability level). Selected bond lengths [Å] and angles [°]: Ru-indenyl(centroid) 1.849(3), Ru(1)–C(25) 2.354(3), Ru(1)–C(26) 2.196(3), Ru(1)–C(27) 2.125(3), Ru(1)–C(28) 2.105(3), Ru(1)–C(29) 2.307(3), Ru(1)–N(1) 2.169(3), Ru(1)–P(1) 2.2690(8), Ru(1)–Cl(1) 2.4575(8); Cl(1)–Ru(1)–N(1) 93.56(7), Cl(1)–Ru(1)–P(1) 93.30(3), N(1)–Ru(1)–P(1) 95.88(7).

that in $[Ru(CO)(PPh_3)_2(\eta^5-C_9H_7)][ClO_4]$ [2.273(3) Å].^[25] The pendant ptpy substituent of the indenyl group is significantly twisted and nonplanar with a dihedral angle between the 4-tolyl and pyridyl rings of about 36.8°.

Cyclometalated Ru Carbonyl Complexes

Treatment of $[Ru(CO)_2Cl_2]_x$ with $Hg(ptpy)_2$ afforded a yellow compound characterized as cis-[Ru(ptpy)(CO)₂]₂(μ-Cl)₂ (8) in 18% yield. A higher yield (62%) of 8 was obtained when $[Hg(ptpy)(\mu-Cl)]_2$ was employed as the transmetalating agent (Scheme 6). The cyclometalated azobenzene analogue, $[Ru(N^{\wedge}C)(CO)_2Cl]_2$ (N^CH = azobenzene), has been previously prepared by Bruce et al. [26] The IR spectrum of 6 shows $\nu(C \equiv O)$ at 2039 and 2104 cm⁻¹, indicative of the cis geometry of the carbonyl ligands. The molecular structure of 8 consisting of two symmetry-related Ru(ptpy)(CO)₂Cl fragments is shown in Figure 4. The geometry around Ru is pseudo-octahedral, with the cis-disposed CO ligands opposite the pyridyl ring and chloride. The Ru-C(ptpy) distance [2.048(6) Å] in 8 is shorter than that in cis-[Ru(bzq)₂(CO)₂] [2.161(5) Å], [16] in which both the Ru-C(bzq) bonds are trans to CO. The Ru-CO distances [1.888(7) and 1.830(7) Å] in 8 are comparable to

Scheme 6. Synthesis of 8.

Figure 4. Perspective view of cis-[Ru(ptpy)(CO)₂]₂(μ -Cl)₂ (8) (displacement ellipsoids drawn at the 50% probability level). Selected bond lengths [Å] and angles [°]: Ru(1)–C(11) 2.048(6), Ru(1)–N(1) 2.139(5), Ru(1)–C(13) 1.888(7), Ru(1)–C(14) 1.830(7), Ru(1)–Cl(1) 2.542(2), Ru(1)–Cl(1A) 2.465(2); C(14)–Ru(1)–C(13) 88.0(3), C(14)–Ru(1)–C(11) 87.7(3), C(13)–Ru(1)–C(11) 94.5(3), C(14)–Ru(1)–N(1) 92.7(2), C(13)–Ru(1)–N(1) 174.5(2), C(11)–Ru(1)–N(1) 80.1(2), C(14)–Ru(1)–Cl(1A) 175.8(2), C(13)–Ru(1)–Cl(1A) 91.1(2), C(11)–Ru(1)–Cl(1A) 88.3(2), N(1)–Ru(1)–Cl(1A) 88.0(1), C(14)–Ru(1)–Cl(1) 101.1(2), C(13)–Ru(1)–Cl(1) 92.3(2), C(11)–Ru(1)–Cl(1) 169.1(2), N(1)–Ru(1)–Cl(1) 93.0(2), Cl(1A)–Ru(1)–Cl(1) 83.00(5), Ru(1A)–Cl(1)–Ru(1) 97.00(5) (symmetry code: -x+1, -y, -z+1).

those in cis-[Ru(bzq)₂(CO)₂] [1.87(1) and 1.81(1) Å]. ^[16b] The Ru–Cl(trans to 4-tolyl) [2.542(2) Å] is longer than Ru–Cl(trans to CO) [2.465(2) Å], suggesting that the σ 4-tolyl group has a stronger trans influence than carbonyl.

Photosubstitution of cis-[Ru(bzq)₂(CO)₂]

Attempts to prepare RuII bis-cyclometalated complexes by treatment of $[Ru(CO)_2Cl_2]_x$ with excess $[Hg(ptpy)(\mu-Cl)]_2$ were unsuccessful. We then turned our attention to substitution of the reported compound cis-Ru(bzq)₂(CO)₂ with Lewis bases. Prolonged reaction of cis-[Ru(bzq)₂(CO)₂] with excess PPh₃ in refluxing DMF afforded the mono carbonyl compound cis-[Ru(bzq)₂(CO)(PPh₃)] in low yield (about 7%). The substitution of cis-[Ru(bzq)₂(CO)₂] was found to be accelerated by UV light. Photolysis of cis-[Ru(bzq)₂(CO)₂] in THF at room temperature afforded a highly airpresumably yellow species, sensitive, Ru(bzq)₂-(CO)(THF), which exhibited a C-O band at 2000 cm⁻¹ in the IR spectrum. The MeCN adduct cis-[Ru(bzq)₂(CO)(Me-CN)] (9) was prepared similarly by photolysis of cis-[Ru(bzq)₂(CO)₂] in MeCN and isolated as an air-sensitive red solid. Photosubstitution of cis-[Ru(bzq)2(CO)2] with PPh₃ in THF afforded cis-[Ru(bzq)₂(CO)(PPh₃)] (10) (Scheme 7). Compound 10 could also be prepared in good yield from 9 and PPh3. An X-ray diffraction study revealed that the photosubstitution of cis-[Ru(bzq)₂(CO)₂] led to a change in the stereochemistry of the complex. The two Ru-C(bzq) σ -bonds that are *trans* to each other in *cis*-[Ru(bzq)₂- $(CO)_2$] become mutually *cis* in **10** (vide infra). Similarly, the pyridine (py) adduct Ru(bzq)₂(CO)(py) (11) was prepared by photosubstitution of cis-[Ru(bzq)₂(CO)₂] with pyridine in THF. An attempt to prepare the bis-pyridine complex $Ru(bzq)_2(py)_2$ by photolysis of *cis*-[Ru(bzq)₂(CO)₂] in neat pyridine was unsuccessful. Unlike 9 and 11, 10 is air stable in both solutions and the solid state. The solid-state structure of 10 is shown in Figure 5. In contrast to cis-[Ru(bzq)₂-(CO)₂], both the Ru–N and Ru–C bonds for the bzq ligands adopt the cis arrangement. The Ru-C(bzq) [2.088(9) and 2.033(8) Å], Ru–N [2.157(7) and 2.194(7) Å], and Ru–CO [1.84(1) Å] distances in 10 are similar to those in cis-[Ru(bzq)₂(CO)₂] [Ru–C(bzq) 2.13(1) and 2.12(1) Å, Ru–N 2.148(8) and 2.161(9) Å, Ru–CO 1.81(1) and 1.87(1) Å].[16b]

Scheme 7. Photosubstitution of cis-[Ru(bzq)₂(CO)₂].

Attempts to prepare bis-cyclometalated Ru carbene species by reactions of 9 with alkynes and alkynols were unsuccessful. Treatment of 9 in THF with ethyl diazoacetate (EDA) resulted in a brown solution, which possibly contained a Ru carbene species given its ability in carbene

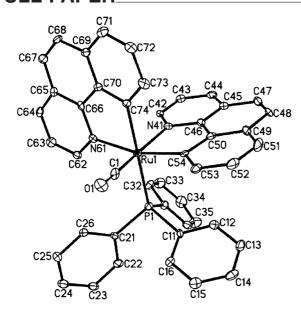


Figure 5. Perspective view of cis-[Ru(bzq)₂(CO)(PPh₃)] (10) (displacement ellipsoids drawn at the 50% probability level). Selected bond lengths [Å] and angles [°]: Ru(1)–C(1) 1.84(1), Ru(1)–C(54) 2.033(8), Ru(1)–C(74) 2.088(9), Ru(1)–N(41) 2.157(7), Ru(1)–N(61) 2.194(7), Ru(1)–P(1) 2.385(3), C(1)–O(1) 1.14(1); C(1)–Ru(1)–C(54) 90.3(4), C(1)–Ru(1)–C(74) 87.9(4), C(54)–Ru(1)–C(74) 89.0(3), C(1)–Ru(1)–N(41) 168.7(3), C(54)–Ru(1)–N(41) 80.0(3), C(74)–Ru(1)–N(61) 98.7(3), C(54)–Ru(1)–N(61) 165.0(3), C(74)–Ru(1)–N(61) 79.4(3), N(41)–Ru(1)–N(61) 89.7(3), C(1)–Ru(1)–P(1) 92.2(3), C(54)–Ru(1)–P(1) 91.6(3), C(74)–Ru(1)–P(1) 179.4(3), N(41)–Ru(1)–P(1) 93.8(2), N(61)–Ru(1)–P(1) 100.1(2), O(1)–C(1)–Ru(1) 173.8(9).

transfer (vide infra). Unfortunately, no crystalline products were isolated from the brown reaction mixture. A preliminary result showed that $\bf 9$ is an active catalyst for cyclopropanation of styrene. For example, treatment of styrene with EDA in the presence of 5 mol-% of $\bf 9$ afforded 2-phenylcyclopropane carboxylate in 76% yield along with a small amount of the homo-coupling product $C_2H_2(CO_2Et)_2$ (<5%). At present, efforts are being made to isolate the reactive cyclometalated Ru carbene species.

Conclusions

In summary, we have studied the transmetalation of $[Hg(ptpy)_2]$ with a variety of organoruthenium compounds. Treatment of $[Hg(ptpy)_2]$ with $[Cp*RuCl_2]_x$ afforded a mixed-valence Ru^{II} – Ru^{IV} complex that contains a μ - η^6 : η^2 ptpy ligand. Transmetalation of $[Hg(ptpy)_2]$ with $[Ru(3-phenylindenylid-1-ene)(PPh_3)_2Cl_2]$ resulted in coupling of the carbene and the ptpy ligand and the formation of a Ru^{II} complex with a η^5 : κN -Ph-ind-ptpy ligand. The bis-cyclometalated Ru monocarbonyl complexes cis- $[Ru(bzq)_2(CO)L]$ were prepared by photosubstitution of cis- $[Ru(bzq)_2(CO)_2]$ with L (MeCN, PPh_3, and py).

Experimental Section

General: All manipulations were carried out under nitrogen by standard Schlenk techniques. Solvents were purified, distilled, and degassed prior to use. NMR spectra were recorded with a Bruker ALX 300 spectrometer operating at 300 and 121.5 MHz for 1 H and 31 P, respectively. Chemical shifts (δ , ppm) were reported with reference to SiMe₄ (1 H) and H₃PO₄ (31 P). Infrared spectra were recorded with a Perkin–Elmer 16 PC FT-IR spectrophotometer, and mass spectra with a Finnigan TSQ 7000 spectrometer. Elemental analyses were performed by Medac Ltd., Surrey, UK.

The compounds $[Cp*RuCl_2]_x$, $^{[27]}[Cp*Ru(NO)Cl_2]^{[28]}$ $(Cp*=\eta^5-C_5Me_5)$, $[Ru(3\text{-phenylindenylid-1-ene})(PPh_3)_2Cl_2]$, $^{[29]}$ cis- $[Ru(bzq)_2-(CO)_2]$, $^{[16a]}$ $[Hg(ptpy)_2]$, and $[Hg(ptpy)(\mu-Cl)]_2^{[30]}$ were synthesized according to literature methods. Hydrogen atom labeling schemes for cyclometalated $ptpy^-$ and bzq^- ligands are shown below.

 $[Cp*Ru(ptpy)(NO)]_2[Hg_2Cl_6]$ ([1]₂· $[Hg_2Cl_6]$): A mixture of $Cp*Ru(NO)Cl_2$ (80 mg, 0.237 mmol) and $Hg(ptpy)_2$ (65 mg, 0.120 mmol) in THF (25 mL) was heated at reflux for 4 h, during which time the reaction color changed from green to orange. The solvent was pumped off, and the residue was washed with Et₂O and then extracted into CH₂Cl₂. Recrystallization from CH₂Cl₂/ Et_2O gave orange crystals. Yield: 125 mg (71%).C₄₄H₅₀Cl₆Hg₂N₄O₂Ru₂·1/2THF (1520.0): calcd. C 36.5, H 3.65, N 3.69; found C 36.3, H 3.32, N 3.75. ¹H NMR ([D₆]acetone): δ = 2.04 (s, 30 H, Cp*), 2.61 (s, 6 H, CH₃), 7.40 (m, 4 H, H¹ and H²), 7.72 (d, J = 6.7 Hz, 2 H, H³), 8.13 (m, 4 H, H⁵ and H⁶), 8.45 (d, $J = 7.2 \text{ Hz}, 2 \text{ H}, \text{ H}^4$), 8.94 (d, $J = 6.2 \text{ Hz}, 2 \text{ H}, \text{ H}^7$) ppm. IR (KBr): $\tilde{v} = 1783$ (s) [v(NO)]. MS (FAB): m/z (%) = 435 $([Cp*Ru(ptpy)(NO)]^+), 406 ([Cp*Ru(ptpy)]^+ + 1).$

[Cp*Ru(ptpy)(NO)][PF₆] (1[PF₆]): Na[PF₆] (1 equiv., 14 mg, 0.081 mmol) was added to a solution of [1]₂·[Hg₂Cl₆] (60 mg, 0.081 mmol) in acetone (20 mL) and the mixture was stirred at room temperature for 2 h and filtered through a Celite pad. The filtrate was evaporated to dryness and the residue recrystallized from acetone/Et₂O to give an orange crystalline solid. Yield: 48 mg (79%). C₂₂H₂₅F₆N₂OPRu (579.48): calcd. C 45.5, H 4.3, N 4.83; found C 46.1, H 4.26, N 4.77. ¹H NMR ([D₆]acetone): δ = 2.01 (s, 15 H, Cp*), 2.64 (s, 3 H, CH₃), 7.42 (m, 2 H, H¹ and H²), 7.70 (d, J = 6.7 Hz, 1 H, H¹), 8.12 (m, 2 H, H⁵ and H⁶), 8.47 (d, J = 7.2 Hz, 1 H, H⁴), 8.98 (d, J = 6.2 Hz, 1 H, H⁷) ppm. ³¹P{¹H} NMR ([D₆]acetone): δ = 76.8 ppm. IR (KBr): \tilde{v} = 1779 cm⁻¹ [ν (NO)]. MS (FAB): mlz (%) = 435 (M⁺ – PF₆), 405 (M⁺ – PF₆ – NO).

[Cp*Ru(μ-ptpy)RuCl₂Cp*]₂[Hg₂Cl₆] (2): A mixture of [Cp*RuCl₂]_x (85 mg, 0.138 mmol) and [Hg(ptpy)₂] (94 mg, 0.135 mmol) in THF (30 mL) was stirred at room temperature overnight and filtered. The filtrate was evaporated to dryness and the residue was recrystallized from CH₂Cl₂/Et₂O to give dark red crystals, which were suitable for X-ray diffraction analysis. Yield: 54 mg (39%). [C₃₂H₄₀Cl₅HgNRu₂]₂·HgCl₂ (1136.65): calcd. C 33.8, H 3.52, N 1.23; found C 34.1, H 3.64, N 1.21. ¹H NMR ([D₆]acetone): δ = 1.87 (s, 30 H, Cp*), 1.99 (s, 30 H, Cp*), 2.46 (s, 6 H, CH₃), 4.86–5.03 (m, 4 H, H¹ and H²), 5.36 (d, J = 6.2 Hz, 2 H, H³), 7.86–7.94 (m, 4 H, H⁵ and H⁶), 8.63 (d, J = 7.1 Hz, 2 H, H⁶), 9.08 (d, 2 H, J = 6.8 Hz, H⁷) ppm. MS (FAB): m/z (%) 712 ([Cp*Ru(ptpy) RuCp*Cl₂]⁺).

[Ru(Ph-ind-ptpy)(PPh₃)Cl] (3): Hg(ptpy)₂ (94 mg, 0.175 mmol) was added to a solution of Ru(3-phenylindenylid-1-ene)(PPh₃)₂Cl₂ (100 mg, 0.113 mmol) in THF (20 mL) and the mixture was stirred

at room temperature overnight and filtered. The solvent was pumped off and the residue was washed with hexane/Et₂O and extracted with CH₂Cl₂. Recrystallization from CH₂Cl₂/hexane gave red crystals. Yield: 37 mg (43%). C₄₅H₃₅ClNPRu·1/2H₂O (766.29): calcd. C 70.5, H 4.74, N 1.83; found C 70.0, H 4.55, N 1.84. ¹H NMR (CDCl₃): δ = 2.17 (s, 3 H, CH₃), 5.30 (s, 1 H, CH), 6.88–7.49 (m, 27 H, Ph), 7.68 (d, J = 5.8 Hz, 1 H, H⁴), 7.81 (m, 2 H, H⁵ and H⁶), 8.61 (d, J = 7.2 Hz, 1 H, H⁷) ppm. ³¹P{¹H} NMR (CDCl₃): δ = 33.1 ppm. MS (FAB): m/z (%) = 758 (M⁺ + 1), 722 (M⁺ – Cl).

[Ru(ptpy)(CO)₂]₂(μ-Cl)₂ (8): A mixture of [Ru(CO)₂Cl₂]_x (80 mg, 0.35 mmol) and [Hg(ptpy)(μ-Cl)]₂ (285 mg, 0.35 mmol) in DMF (15 mL) was heated at reflux overnight. The solvent was removed in vacuo and the residue was extracted with CH₂Cl₂. The extract was concentrated to about 10 mL and excess Et₂O was added until a yellow solid was formed. The product was purified by column chromatography (silica) using CH₂Cl₂/acetone (9:1) as eluent. Recrystallization from CH₂Cl₂/Et₂O afforded pale yellowish green crystals. Yield: 68 mg (62%). C₂₈H₂₀Cl₂N₂O₄Ru₂ (721.50): calcd. C 46.6, H 2.77, N 3.88; found C 47.3, H 2.71, N 3.79. ¹H NMR (CDCl₃): δ = 2.21 (s, 6 H, CH₃), 6.92–7.03 (m, 4 H, H¹ and H²), 7.14 (d, J = 6.2 Hz, 2 H, H³), 7.76–7.96 (m, 4 H, H⁵ and H⁶), 8.49 (d, J = 7.4 Hz, 2 H, H⁶), 9.17 (d, J = 7.0 Hz, 2 H, H⁷) ppm. IR (KBr): \tilde{v} = 2039, 2104 cm⁻¹ [ν (C≡O)]. MS (FAB): m/z = 360 ([1/2M]⁺).

cis-[Ru(bzq)₂(CO)(MeCN)] (9): A solution of cis-[Ru(bzq)₂(CO)₂] (30 mg, 0.058 mmol) in MeCN (25 mL) was irradiated with a mercury lamp under N2 for 1 h, during which time the color changed from pale yellow to dark red. The solvent was pumped off, and the residue was washed with Et₂O and then extracted with MeCN. Recrystallization from MeCN-CH₂Cl₂-Et₂O gave an air-sensitive dark red crystalline solid. Yield: 23 mg (76%).C₂₉H₁₉N₃ORu·CH₂Cl₂·1/2CHCl₃ (671.19): calcd. C 54.6, H 3.23, N 6.26; found C 54.7, H 3.27, N 6.21. ¹H NMR (CD₃CN): δ = 6.69 (d, J = 7.5 Hz, 1 H, H¹), 6.87 (t, J = 7.5 Hz, 1 H, H²), 6.98–

7.03 (m, 1 H, H¹), 7.10–7.25 (m, 2 H, H² and H³), 7.48–7.58 (m, 2 H, H³ and H³), 7.55 (t, J = 7.5 Hz, 1 H, H³), 7.75 (s, 2 H, H⁴), 7.82–7.87 (m, 2 H, H⁵), 8.09 (d, J = 8.0 Hz, 1 H, H⁶), 8.45 (d, J = 7.0 Hz, 1 H, H⁶), 8.55 (d, J = 7.8 Hz, 1 H, H⁶), 9.40 (d, J = 4.8 Hz, 1 H, H⁶) ppm. IR (KBr): $\tilde{v} = 1890$ [v(C = O)], 2014 [v(C = N)] cm $^{-1}$.

cis-[Ru(bzq)₂(CO)(PPh₃)] (10): A mixture of *cis*-[Ru(bzq)₂(CO)₂] (50 mg, 0.097 mmol) and PPh₃ (51 mg, 0.195 mmol) in THF (25 mL) was irradiated with UV light under N₂ for 1 h, during which time the reaction color changed from pale yellow to dark yellow. The solvent was pumped off, and the residue was washed with Et₂O and extracted with CH₂Cl₂. Recrystallization from CH₂Cl₂/Et₂O/hexane gave yellow crystals that were suitable for X-ray diffraction. Yield: 38 mg (53%). C₄₅H₃₁N₂OPRu·1/2H₂O (756.81): calcd. C 71.4, H 4.26, N 3.70; found C 71.3, H 4.29, N 3.68. ¹H NMR (CDCl₃): δ = 6.47–6.52 (m, 1 H, H¹), 6.66 (d, J = 5.0 Hz, 1 H, H²), 6.92–7.00 (m, 2 H, H¹ and H²), 7.02–7.18 (m, 15 H, PPh₃), 7.27–7.35 (m, 4 H, H⁴ and H⁵), 7.55–7.58 (m, 1 H, H⁶), 7.67–7.99 (m, 4 H, H³ and H²), 8.12–8.15 (m, 1 H, Hϐ), 8.27 (d, J = 7.8 Hz, 1 H, H₆), 8.88 (d, J = 4.8 Hz, 1 H, Hϐ) ppm. IR (KBr): \bar{v} = 1912 cm⁻¹ [ν (C≡O)].

[Ru(bzq)₂(CO)(py)] (**py = pyridine)** (11): A mixture of *cis*-[Ru(bzq)₂-(CO)₂] (30 mg, 0.058 mmol) and pyridine (10 μL, 0.116 mmol) in THF (25 mL) was irradiated with UV light under N₂ for 1 h, during which time the color changed from pale yellow to orange red. The solvent was filtered and pumped off, and the residue was washed with Et₂O and then extracted with THF. Recrystallization from THF/Et₂O gave an air-sensitive, orange crystalline solid. Yield: 17 mg (52%). Despite several attempts, we have not been able to obtain satisfactory analytical data for the compound. ¹H NMR ([D₆]benzene): δ = 6.02–6.08 (m, 2 H, H¹), 6.85–6.89 (m, 2 H, H²), 7.00 (m, 4 H, H³ and H³), 7.27–7.36 (m, 2 H, py), 7.56 (t, J = 7.4 Hz, 2 H, py), 7.62–7.69 (m, 4 H, H⁴ and H⁵), 7.76 (t, J = 8.6 Hz, 1 H, py), 8.37 (d, J = 4.8 Hz, 2 H, H⁶), 9.31 (d, J = 7.4 Hz, 2 H, H³) ppm. IR (KBr): \tilde{v} = 1898 cm⁻¹ [ν (C≡O)].

Table 1. Crystallographic data and structure refinement parameters for complexes [1]₂·[Hg₂Cl₆], 2·HgCl₂, 3·C₄H₈O, 8, and 10·C₆H₁₄·Et₂O.

Complex	$[1]_2 \cdot [Hg_2Cl_6]$	2 ⋅HgCl ₂	3 ⋅C ₄ H ₈ O	8	$10 \cdot \text{C}_6 \text{H}_{14} \cdot \text{Et}_2 \text{O}$
Empirical formula	C ₂₂ H ₂₅ Cl ₃ HgN ₂ ORu	C ₃₂ H ₄₀ Cl _{5.5} Hg _{1.5} NRu ₂	C ₄₉ H ₄₃ ClNOPRu	C ₂₈ H ₂₀ Cl ₂ N ₂ O ₄ Ru ₂	C ₅₂ H ₄₈ N ₂ O ₂ PRu
Formula mass	741.45	1136.65	829.33	721.50	864.96
Crystal system	monoclinic	triclinic	monoclinic	orthorhombic	monoclinic
Space group	$P2_1/n$	$P\bar{1}$	$P2_1/n$	Pbca	$P2_1/n$
a [Å]	12.154(1)	10.1424(8)	11.6814(6)	11.850(1)	13.819(3)
$b [\mathring{A}]$	10.854(1)	10.4592(8)	22.678(1)	13.583(1)	15.047(3)
c [Å]	19.439(2)	17.146(1)	14.7302(8)	16.832 (2)	20.414(4)
a [°]	90	96.572(1)	90	90	90
β[°]	107.583(1)	90.416(1)	92.447(1)	90	101.100(5)
γ [°]	90	102.348(1)	90	90	90
$V[A^3]$	2444.5(3)	1764.2(2)	3898.7(4)	2709.0(5)	4165.0(2)
Z^{-1}	4	2	4	4	4
$D_{ m calcd}$ [g cm $^{-3}$]	2.015	2.140	1.413	1.769	1.379
T [K]	100(2)	100(2)	100(2)	298(2)	100(2)
$\mu [\mathrm{mm}^{-1}]$	7.235	7.791	0.551	1.350	0.459
F(000)	1416	1081	1712	1424	1796
Reflections col-	14064	14915	23888	14203	23644
lected					
Independent reflec-	5719	7934	9230	3056	8456
tions					
R_{int}	0.0400	0.0303	0.0446	0.0966	0.0964
$R_1^{[a]}, wR_2^{[b]}[I >$	0.0406, 0.0602	0.0519, 0.1384	0.0477, 0.1086	0.0536, 0.0904	0.0626, 0.1077
$2\sigma(I)$]	-	•	•	-	•
R_1 , wR_2 (all data)	0.0732, 0.0686	0.0606, 0.1445	0.0686, 0.1184	0.0719, 0.1225	0.1112, 0.1800
Gof ^[c]	0.903	1.029	1.017	1.073	0.902

[a] $R_1 = \Sigma F_o - F_c | \Sigma F_o$. [b] $WR_2 = [\Sigma w (F_o^2 - F_c^2)^2 / \Sigma w F_o^{22}]^{1/2}$. [c] $S_o = [\Sigma w (F_o - F_c)^2 / (N_{obs} - N_{param})]^{1/2}$.

X-ray Crystallographic Study: A summary of crystallographic data and experimental details for complexes [1]₂·[Hg₂Cl₆], **2**·HgCl₂, **3**·C₄H₈O, **8**, and **10**·C₆H₁₄·Et₂O are listed in Table 1. All intensity data were collected with a Bruker SMART-APEX diffractometer using graphite-monochromated Mo- K_{α} radiation (λ = 0.70173 Å). The data were integrated and sorted using SAINT v6.26A software [31] and were corrected for absorption by empirical methods. The structures were solved by direct methods and refined by full-matrix least-squares analyses on F^2 . Calculations were performed using the SHELXTL[32] crystallographic software package. All non-hydrogen atoms were refined anisotropically with suitable restraints. Hydrogen atoms were generated geometrically (C–H = 0.95 Å) and allowed to ride on their respective parent carbon or nitrogen atoms before the final cycle of least-squares refinement.

CCDC-269638 to -269642 contain the supplementary crystallographic data for this paper. These data can be obtained free of charge from The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/data_request/cif.

Acknowledgments

The financial support from the Hong Kong University of Science and Technology and the Hong Kong Research Grants Council is gratefully acknowledged.

- a) K. A. King, S. Sprouse, R. J. Watts, J. Am. Chem. Soc. 1985, 107, 1431–1432;
 b) Y. Ohsawa, S. Sprouse, K. A. King, M. K. DeArmond, K. W. Hanck, R. J. Watts, J. Phys. Chem. 1987, 91, 1047–1057;
 c) A. P. Wilde, K. A. King, R. J. Watts, J. Phys. Chem. 1991, 95, 629–634.
- [2] a) A. D. Ryabov, *Chem. Rev.* 1990, 90, 403–424; b) V. Ritleng,
 C. Sirlin, M. Pfeffer, *Chem. Rev.* 2002, 102, 1731–1770; c) J.
 Dupont, C. S. Consorti, J. Spencer, *Chem. Rev.* 2005, 105, 2527–2572.
- [3] a) A. D. Ryabov, Y. N. Firsova, V. N. Goral, E. S. Ryabova, A. N. Shevelkova, L. L. Troitskaya, T. V. Demeschik, V. I. Sokolov, Chem. Eur. J. 1998, 4, 806–813; b) E. V. Krooglyak, G. M. Kazankov, S. A. Kurzeev, V. A. Polyakov, A. N. Semenov, A. D. Ryabov, Inorg. Chem. 1996, 35, 4804–4806; c) L. Alexandrova, O. G. D'yachenko, G. M. Kazankov, V. A. Polyakov, P. V. Samuleev, E. Sansores, A. D. Ryaobv, J. Am. Chem. Soc. 2000, 122, 5189–5200; d) A. D. Ryabov, Adv. Inorg. Chem. 2004, 55, 201–269.
- [4] a) R. E. Holmlin, J. K. Barton, *Inorg. Chem.* 1995, 34, 7–8; b)
 J. L. Kisko, J. K. Barton, *Inorg. Chem.* 2000, 39, 4942–4949.
- [5] a) M. A. Baldo, S. Lamansky, P. E. Burrows, M. E. Thompson, S. R. Forrest, *Appl. Phys. Lett.* **1999**, *75*, 4–6; b) M. Sudhakar, P. I. Djurovich, T. E. Hogen-Esch, M. E. Thompson, *J. Am. Chem. Soc.* **2003**, *125*, 7796–7797; c) A. B. Tamayo, B. D. Alleyne, P. I. Djurovich, S. Lamansky, I. Tsyba, N. N. Ho, R. Bau, M. E. Thompson, *J. Am. Chem. Soc.* **2003**, *125*, 7377–7387.
- [6] a) G. DiMarco, M. Lanza, A. Mamo, I. Sterfio, C. Di Pietro, G. Romeo, S. Campagna, *Anal. Chem.* 1998, 70, 5019–5023; b)
 R. Gao, D. G. Ho, B. Hernandez, M. Selke, D. Murphy, P. I. Djurovich, M. E. Thompson, *J. Am. Chem. Soc.* 2002, 124, 14828–14829.
- [7] K. K.-W. Lo, C.-K. Chung, N. Zhu, Chem. Eur. J. 2003, 9, 475–483.
- [8] a) S. Sprouse, K. A. King, P. J. Spellane, R. J. Watts, J. Am. Chem. Soc. 1984, 106, 6647–6653; b) A. B. Tamayo, B. D. Alleyne, P. I. Djurovich, S. Lamansky, I. Tsyba, N. N. Ho, R. Bau, M. E. Thompson, J. Am. Chem. Soc. 2003, 125, 7377–7387.
- [9] a) S. Lamansky, P. Djurovich, D. Murphy, F. Abdel-Razzaq, R. Kwong, I. Tsyba, M. Bortz, B. Mui, R. Bau, M. E. Thomp-

- son, *Inorg. Chem.* **2001**, *40*, 1704–1711; b) J. Li, P. I. Djurovich, B. D. Alleyne, M. Yousufuddin, N. N. Ho, J. C. Thomas, J. C. Peters, R. Bau, M. E. Thompson, *Inorg. Chem.* **2005**, *44*, 1713–1727
- [10] a) A. D. Ryabov, V. S. Sukharev, L. Alexandrova, R. Le Lagadec, M. Pfeffer, *Inorg. Chem.* 2001, 40, 6529–6532; b) I. S. Alpeeva, V. S. Soukharev, L. Alexandrova, N. V. Shilova, N. V. Bovin, E. Csöregi, A. D. Ryabov, I. Yu. Sakharov, *J. Biol. Inorg. Chem.* 2003, 8, 683–688.
- [11] a) K. Kalyarasundaram, Coord. Chem. Rev. 1982, 46, 159–244; b) V. Balzani, F. Scandola, Supramolecular Photochemistry, Ellis Horwood, Chichester, UK, 1991; c) V. Balzani, A. Juris, M. Venturi, S. Campagna, S. Serroni, Chem. Rev. 1996, 96, 759–834.
- [12] a) E. C. Constable, J. M. Holmes, J. Organomet. Chem. 1986, 301, 203–208; b) P. Reveco, R. H. Schmehl, W. R. Cherry, F. R. Fronczek, J. Selbin, Inorg. Chem. 1985, 24, 4078–4082; c) A. D. Ryabov, V. S. Sukharev, L. Alexandrova, R. Le Lagadec, M. Pfeffer, Inorg. Chem. 2001, 40, 6529–6532; d) H. Hadazaheh, M. C. DeRosa, G. P. A. Yap, A. R. Rezvani, R. J. Crutchley, Inorg. Chem. 2002, 41, 6521–6526; e) A. D. Ryabov, R. Le Lagadec, H. Estevez, R. A. Toscano, S. Hernandez, L. Alexandrova, V. S. Kurova, A. Fischer, C. Sirlin, M. Pfeffer, Inorg. Chem. 2005, 44, 1626–1634.
- [13] a) S. Fernandez, M. Pfeffer, V. Ritleng, C. Sirlin, Organometal-lics 1999, 18, 2390–2394; b) D. L. Davies, O. Al-Duaij, J. Fawcett, M. Giardiello, S. T. Hilton, D. R. Russell, Dalton Trans. 2003, 4132–4138; c) J. P. Djukic, A. Berger, M. Duquenne, M. Pfeffer, A. De Cian, N. Kyritsakas-Gruber, J. Vachon, J. Lacour, Organometallics 2004, 23, 5757–5767.
- [14] a) A. M. Clark, C. E. F. Rickard, W. R. Roper, L. J. Wright, Organometallics 1999, 18, 2813–2820; b) A. M. Clark, C. E. F. Rickard, W. R. Roper, L. J. Wright, J. Organomet. Chem. 2000, 598, 262–275.
- [15] a) J. Matthes, S. Grundemann, A. Toner, Y. Guari, B. Donnadieu, J. Sapndl, S. Sao-Etienne, E. Clot, H.-H. Limbach, B. Chaudret, *Organometallics* 2004, 23, 1424–1433; b) K. Hiraki, M. Koizumi, S. Kira, H. Kawano, *Chem. Lett.* 1998, 27, 47–48.
- [16] a) M. I. Bruce, B. L. Goodall, F. G. A. Stone, *J. Organomet. Chem.* 1973, 60, 343–349; b) J. M. Patrick, A. H. White, M. I. Bruce, M. J. Beatson, D. S. C. Black, G. B. Deacon, N. C. Thomas, *J. Chem. Soc., Dalton Trans.* 1983, 2121–2123.
- [17] A. Berger, J. P. Djukic, M. Pfeffer, J. Lacour, L. Vial, A. de Cian, N. Kyritsakas-Gruber, *Organometallics* 2003, 22, 5243–5260.
- [18] T. J. Kistenmacher, M. Rossi, C. C. Chiang, R. P. Van Duyne, A. R. Siedle, *Inorg. Chem.* 1980, 19, 3604–3608.
- [19] J. Chang, R. G. Bergman, J. Am. Chem. Soc. 1987, 109, 4298– 4304.
- [20] G. B. Richter-Addo, P. Legzdins, *Metal Nitrosyls*, Oxford University Press, New York, 1992.
- [21] Q.-F. Zhang, F. K. M. Cheung, W.-Y. Wong, I. D. Williams, W.-H. Leung, *Organometallics* 2001, 20, 3777–3781.
- [22] K. M. Rao, C. L. Day, R. A. Jacobson, R. J. Angelici, *Organometallics* **1992**, *11*, 2303–2304.
- [23] a) J.-P. Djukic, K. H. Dötz, M. Pfeffer, A. De Cian, J. Fischer, Organometallics 1997, 16, 5171–5182; b) J.-P. Djukic, A. Maisse, M. Pfeffer, K. H. Dötz, M. Nieger, Eur. J. Inorg. Chem. 1998, 1781–1790; c) J.-P. Djukic, A. Maisse-François, M. Pfeffer, K. H. Dötz, A. De Cian, J. Fischer, Organometallics 2000, 19, 5484–5499; d) C. Michon, J.-P. Djukic, Z. Ratkovic, J.-P. Collin, M. Pfeffer, A. De Cian, J. Fischer, D. Heiser, K. H. Dötz, N. Nieger, Organometallics 2002, 21, 3519–3535; e) J.-P. Djukic, C. Machon, D. Heiser, N. Kyrisakas-Gruber, A. De Cian, K. H. Dötz, M. Pfeffer, Eur. J. Inorg. Chem. 2004, 2107–2122.
- [24] J.-P. Djukic, A. Maisse, M. Pfeffer, K. H. Dötz, M. Nieger, Organometallics 1999, 18, 2786–2790.

- [25] L. A. Oro, M. A. Ciriano, M. Campo, M. C. C. Foces-Foces, F. H. Cano, J. Organomet. Chem. 1985, 289, 117–131.
- [26] M. I. Bruce, M. Z. Iqbal, F. G. A. Stone, J. Chem. Soc. A 1971, 2820–2828.
- [27] T. D. Tilley, R. H. Grubbs, J. E. Bercaw, *Organometallics* 1984, 3, 274–278.
- [28] M. C. Seidler, R. G. Bergman, J. Am. Chem. Soc. 1984, 106, 6110–6111.
- [29] H.-J. Schandz, L. Jafarpour, E. D. Stevens, S. P. Nolan, *Organometallics* 1999, 18, 5187–5190.
- [30] D. St. C. Black, G. B. Deacon, G. L. Edwards, B. M. Gate-house, Aust. J. Chem. 1993, 46, 1323–1336.
- [31] SMART and SAINT+ for Windows NT V6.02a. Bruker Analytical X-ray Instruments Inc., Madison, WI, USA, 1998.
- [32] G. M. Sheldrick, SHELXTL-Plus V5.1 Software Reference Manual, Bruker AXS Inc., Madison, WI, USA, 1997.

Received: May 10, 2005

Published Online: October 25, 2005